
SymoEngine 2.0
Graphical engine

Bialkó István
bialko.istvan@gmail.com



Version history

� OpenGL 2.0

� SDL 1.2

� Unorganized code 

(5000 lines)

� Inflexible

� OpenGL 3.3+

� SDL 2

� GLM

� Nested classes

� Configuration files

� Flexible

1.0 2.0



Major changes

� Object Oriented Design

� Replaced fix-function matrices – GLM

� 3-way pipeline

� Parametric scenes – configuration file

� Material to Object drawing



Structure
Engine

Game

Scene*

Pipeline (2D/3D)

Shader*

Texture*

Material*

Groups*

Camera*

Object*

Light*

- Main loop

- Events

- Object informations

- Indices for each material

- Holds matrices: M, MV, MVP

- Static / 3D

- Window

- FPS cap

- Folders

- Initializing

- Transformation Matrix

- ID – copying

- Projection Matrix

-Program ID

-Loading, reloading, 

deleting program

- For drawing

- Framebuffer

- Informations

- Data buffer

- View Matrix

- Field of View

- Movement

- Point, infinite, …



Scene configuration file

� S Scene

� G Group1 0 0 0 0 0 1 0 0 1 1 1

� O Object1 test/ static 0 0 0 0 1 0 0 1 1 1

� C Camera1 0 100 100 0 0 0 64

� L Light1 O 0 1000 1000 0 0 0 1 1 1 1 0

� L Light2 P 0 100 1000 1 1 1 1 0

� --- More options later ---



Pipeline

groups[i].getObjects()[j].getTransform() groups[i].getTransform()

ModelViewMatrix

cameras[active].getViewM()

pipe.getTransform()

ModelViewProjectionMatrix

ModelMatrix

object

shader



Drawing sequence

� Main Loop

� 3D initialization, settings

� 3D draw to frame buffer

� 2D initialization, settings

� Postprocess

� 2D text, menu

� Final draw to screen



Drawing sequence

� Draw to buffer function

� for each materialmaterialmaterialmaterial

� glUseProgram(material.getProgram())

� Set up attrib pointers

� Set up textures, color uniforms

� for each groupgroupgroupgroup

� for each objectobjectobjectobject

� If pipeline changed, recalculate MV, MVP

� glDrawElements – triangles, indices.size()



Drawing sequence

� struct buff {
string material;

vector<unsigned int> indices;

unsigned int bufferID;
} buffer;

� int useBuffer = objects.getIndices(material.getName());

� Bind objects.getBuffers()[useBuffer].bufferID;

� Materials can be ordered by transparency



“3D” effect

� Neutral colored frame

� Static or 3D objects

� In fragment shader:
if static
if projected position is in
frame area
discard;

� Static: terrain, environment

� 3D: moving, dynamic objects

static

3D

20%



To Do

� Graphical enhancements

� Lighting/shadow system

� Dynamic sky

� Special materials

� Menu

� Animations

� Ultimately an editor

� Game functionalities



Why would you use it?

� No programming skill needed to use it

� Quick presentation

� Portable

� Memory efficient



Questions

and

Answers



Thank you!


