Coverage and Detection in Wireless Sensor Networks

Outline

- Intrusion detection in WSN
 - Background & Motivation
 - Main Results
- Current and Future Work
 - Mobile Sensor Networks
 - Bio-inspired approaches
 Coverage and intrusion detection

Intrusion detection in Wireless Sensor Networks

Retrieved from: http://www.defence-industries.com

Motivation

- WSN applications
 - efficient surveillance, civil, military fields
 - detection of intrusion events
- Sensor nodes
 - limited in terms of energy supply
 - high density
 - high redundancy

Retrieved from http://www.ams.org/news 4

Optimization problems

- Minimize energy consumption
 - put sensors into sleep mode
 - other sensors in active mode
- State-of-the-art models
 - each point in the field is monitored with a certain probability at any time instance
 - size and shape of intrusion object
 - detection probability, # of sensors, area to be covered

Rectangle Intrusion Object

- divide the area into squares
- diameter of each square "cell"
 - smaller than length of intrusion object + sensor radiuses

Probabilistic methods for detecting intrusion

- p probability that a random sensor's area overlaps the area of an intrusion object
- p = (area obj + "shadow") / total area to be covered
- Detectionprobability

Maximizing Network Lifetime

- Maximize # of subsets of sensors
- QoS constaints
 - desired detection prob.
 - # of sensors
 - intruder size

Retrieved from: http://blogs.princeton.edu/itsacademic/

Implications & Related Work

- How to build an effective sensor network
 - Detect large objects
 - Small number of active sensors
- Deterministic deployment strategies
 - # of sensors / detection probability
- Intrusion detection of 3D objects

Current & Future work

- Mobile and robotic sensors
 - Newer sensor nodes
 - Ability to relocate
- Efficient patrolling strategies
 - Wireless interference
 - Effective communication
 - Mobility

Retrieved from: www.superdroidrobots.com

Mobile sensors

- Monitoring large/complex areas
 - Group formation
 - Efficiency vs. interference
- Bio-inspired approaches
 - Primate behavior
 - Rhesus macaques
 - □ Large groups
 - Titi monkeys
 - □ Small groups

Mobile sensors

Intuitively

- Large groups
 - Efficient coverage
 - Detection time
- Small groups
 - Successful transmission probability
- Analytical results
 - One or more intruders
 - Interference constraints

Conclusion

Static sensor networks

- Maximizing network lifetime
 - Detection of 2D intrusion objects
 - Nr. of sensor nodes
 - Detection probability
- Mobile sensor networks
 - Bio-inspired approaches
 - Primate behavior
 - Efficient patrolling and communication

Thank you!